Protective effects of cyclooxygenase-2 gene inactivation against peripheral nerve dysfunction and intraepidermal nerve fiber loss in experimental diabetes.

نویسندگان

  • Aaron P Kellogg
  • Tim D Wiggin
  • Dennis D Larkin
  • John M Hayes
  • Martin J Stevens
  • Rodica Pop-Busui
چکیده

OBJECTIVE Activation of the cyclooxygenase (COX) pathway with secondary neurovascular deficits are implicated in the pathogenesis of experimental diabetic peripheral neuropathy (DPN). The aim of this study was to explore the interrelationships between hyperglycemia, activation of the COX-2 pathway, and oxidative stress and inflammation in mediating peripheral nerve dysfunction and whether COX-2 gene inactivation attenuates nerve fiber loss in long-term experimental diabetes. RESEARCH DESIGN AND METHODS Motor and sensory digital nerve conduction velocities, sciatic nerve indexes of oxidative stress, prostaglandin content, markers of inflammation, and intraepidermal nerve fiber (IENF) density were measured after 6 months in control and diabetic COX-2-deficient (COX-2(-/-)) and littermate wild-type (COX-2(+/+)) mice. The effects of a selective COX-2 inhibitor, celecoxib, on these markers were also investigated in diabetic rats. RESULTS Under normal conditions, there were no differences in blood glucose, peripheral nerve electrophysiology, markers of oxidative stress, inflammation, and IENF density between COX-2(+/+) and COX-2(-/-) mice. After 6 months, diabetic COX-2(+/+) mice experienced significant deterioration in nerve conduction velocities and IENF density and developed important signs of increased oxidative stress and inflammation compared with nondiabetic mice. Diabetic COX-2(-/-) mice were protected against functional and biochemical deficits of experimental DPN and against nerve fiber loss. In diabetic rats, selective COX-2 inhibition replicated this protection. CONCLUSIONS These data suggest that selective COX-2 inhibition may be useful for preventing or delaying DPN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peripheral nerve dysfunction in experimental diabetes is mediated by cyclooxygenase-2 and oxidative stress.

Glucose-mediated oxidative stress and alterations in cyclooxygenase (COX) pathway activity with secondary deficits of endoneurial perfusion have been implicated in the pathogenesis of experimental diabetic neuropathy (EDN). We have previously reported that activation of the COX-2 pathway is an important mediator of neurochemical and neurovascular defects in EDN in a rat model. Considering that ...

متن کامل

Effects of cyclooxygenase-2 gene inactivation on cardiac autonomic and left ventricular function in experimental diabetes.

Glucose-mediated oxidative stress and the upregulation of cyclooxygenase (COX)-2 pathway activity have been implicated in the pathogenesis of several vascular complications of diabetes including diabetic neuropathy. However, in nondiabetic subjects, the cardiovascular safety of selective COX-2 inhibition is controversial. The aim of this study was to explore the links between hyperglycemia, oxi...

متن کامل

Peripheral neuropathy in mice with neuronal nitric oxide synthase gene deficiency.

Evidence for the important role of the potent oxidant peroxynitrite in peripheral diabetic neuropathy and neuropathic pain is emerging. This study evaluated the contribution of neuronal nitric oxide synthase (nNOS) to diabetes-induced nitrosative stress in peripheral nerve and dorsal root ganglia, and peripheral nerve dysfunction and degeneration. Control and nNOS-/- mice were made diabetic wit...

متن کامل

Metanx Alleviates Multiple Manifestations of Peripheral Neuropathy and Increases Intraepidermal Nerve Fiber Density in Zucker Diabetic Fatty Rats

Metanx is a product containing L-methylfolate, pyridoxal 5'-phosphate, and methylcobalamin for management of endothelial dysfunction. Metanx ingredients counteract endothelial nitric oxide synthase uncoupling and oxidative stress in vascular endothelium and peripheral nerve. This study evaluates Metanx on diabetic peripheral neuropathy in ZDF rats, a model of type 2 diabetes. Metanx was adminis...

متن کامل

Endoplasmic Reticulum Stress Plays a Key Role in the Pathogenesis of Diabetic Peripheral Neuropathy

Endoplasmic reticulum stress resulting from abnormal folding of newly synthesized proteins impairs metabolism, transcriptional regulation, and gene expression, and it is a key mechanism of cell injury. Endoplasmic reticulum stress plays an important role in cardiovascular and neurodegenerative diseases, cancer, and diabetes. We evaluated the role for this phenomenon in diabetic peripheral neuro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 56 12  شماره 

صفحات  -

تاریخ انتشار 2007